3.19.54 \(\int \frac {\sqrt {1-2 x}}{(2+3 x)^2 (3+5 x)^3} \, dx\) [1854]

Optimal. Leaf size=121 \[ -\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {995 \sqrt {1-2 x}}{22 (3+5 x)}+624 \sqrt {\frac {3}{7}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-\frac {6665}{11} \sqrt {\frac {5}{11}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \]

[Out]

624/7*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)-6665/121*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55^(1/2)-15/2
*(1-2*x)^(1/2)/(3+5*x)^2+(1-2*x)^(1/2)/(2+3*x)/(3+5*x)^2+995/22*(1-2*x)^(1/2)/(3+5*x)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {101, 156, 162, 65, 212} \begin {gather*} \frac {995 \sqrt {1-2 x}}{22 (5 x+3)}-\frac {15 \sqrt {1-2 x}}{2 (5 x+3)^2}+\frac {\sqrt {1-2 x}}{(3 x+2) (5 x+3)^2}+624 \sqrt {\frac {3}{7}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-\frac {6665}{11} \sqrt {\frac {5}{11}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[1 - 2*x]/((2 + 3*x)^2*(3 + 5*x)^3),x]

[Out]

(-15*Sqrt[1 - 2*x])/(2*(3 + 5*x)^2) + Sqrt[1 - 2*x]/((2 + 3*x)*(3 + 5*x)^2) + (995*Sqrt[1 - 2*x])/(22*(3 + 5*x
)) + 624*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]] - (6665*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 101

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f
))), x] + Dist[1/((m + 1)*(b*c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*
g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p
+ 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]

Rule 162

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin {align*} \int \frac {\sqrt {1-2 x}}{(2+3 x)^2 (3+5 x)^3} \, dx &=\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}-\int \frac {-18+25 x}{\sqrt {1-2 x} (2+3 x) (3+5 x)^3} \, dx\\ &=-\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {1}{22} \int \frac {-1298+1485 x}{\sqrt {1-2 x} (2+3 x) (3+5 x)^2} \, dx\\ &=-\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {995 \sqrt {1-2 x}}{22 (3+5 x)}-\frac {1}{242} \int \frac {-53614+32835 x}{\sqrt {1-2 x} (2+3 x) (3+5 x)} \, dx\\ &=-\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {995 \sqrt {1-2 x}}{22 (3+5 x)}-936 \int \frac {1}{\sqrt {1-2 x} (2+3 x)} \, dx+\frac {33325}{22} \int \frac {1}{\sqrt {1-2 x} (3+5 x)} \, dx\\ &=-\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {995 \sqrt {1-2 x}}{22 (3+5 x)}+936 \text {Subst}\left (\int \frac {1}{\frac {7}{2}-\frac {3 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )-\frac {33325}{22} \text {Subst}\left (\int \frac {1}{\frac {11}{2}-\frac {5 x^2}{2}} \, dx,x,\sqrt {1-2 x}\right )\\ &=-\frac {15 \sqrt {1-2 x}}{2 (3+5 x)^2}+\frac {\sqrt {1-2 x}}{(2+3 x) (3+5 x)^2}+\frac {995 \sqrt {1-2 x}}{22 (3+5 x)}+624 \sqrt {\frac {3}{7}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-\frac {6665}{11} \sqrt {\frac {5}{11}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.28, size = 94, normalized size = 0.78 \begin {gather*} \frac {\sqrt {1-2 x} \left (5662+18410 x+14925 x^2\right )}{22 (2+3 x) (3+5 x)^2}+624 \sqrt {\frac {3}{7}} \tanh ^{-1}\left (\sqrt {\frac {3}{7}} \sqrt {1-2 x}\right )-\frac {6665}{11} \sqrt {\frac {5}{11}} \tanh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {1-2 x}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[1 - 2*x]/((2 + 3*x)^2*(3 + 5*x)^3),x]

[Out]

(Sqrt[1 - 2*x]*(5662 + 18410*x + 14925*x^2))/(22*(2 + 3*x)*(3 + 5*x)^2) + 624*Sqrt[3/7]*ArcTanh[Sqrt[3/7]*Sqrt
[1 - 2*x]] - (6665*Sqrt[5/11]*ArcTanh[Sqrt[5/11]*Sqrt[1 - 2*x]])/11

________________________________________________________________________________________

Maple [A]
time = 0.17, size = 82, normalized size = 0.68

method result size
risch \(-\frac {29850 x^{3}+21895 x^{2}-7086 x -5662}{22 \left (3+5 x \right )^{2} \sqrt {1-2 x}\, \left (2+3 x \right )}-\frac {6665 \arctanh \left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{121}+\frac {624 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}\) \(76\)
derivativedivides \(\frac {-\frac {3325 \left (1-2 x \right )^{\frac {3}{2}}}{11}+655 \sqrt {1-2 x}}{\left (-6-10 x \right )^{2}}-\frac {6665 \arctanh \left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{121}-\frac {6 \sqrt {1-2 x}}{-\frac {4}{3}-2 x}+\frac {624 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}\) \(82\)
default \(\frac {-\frac {3325 \left (1-2 x \right )^{\frac {3}{2}}}{11}+655 \sqrt {1-2 x}}{\left (-6-10 x \right )^{2}}-\frac {6665 \arctanh \left (\frac {\sqrt {55}\, \sqrt {1-2 x}}{11}\right ) \sqrt {55}}{121}-\frac {6 \sqrt {1-2 x}}{-\frac {4}{3}-2 x}+\frac {624 \arctanh \left (\frac {\sqrt {21}\, \sqrt {1-2 x}}{7}\right ) \sqrt {21}}{7}\) \(82\)
trager \(\frac {\left (14925 x^{2}+18410 x +5662\right ) \sqrt {1-2 x}}{22 \left (3+5 x \right )^{2} \left (2+3 x \right )}-\frac {6665 \RootOf \left (\textit {\_Z}^{2}-55\right ) \ln \left (-\frac {5 \RootOf \left (\textit {\_Z}^{2}-55\right ) x -8 \RootOf \left (\textit {\_Z}^{2}-55\right )-55 \sqrt {1-2 x}}{3+5 x}\right )}{242}-\frac {312 \RootOf \left (\textit {\_Z}^{2}-21\right ) \ln \left (\frac {3 \RootOf \left (\textit {\_Z}^{2}-21\right ) x -5 \RootOf \left (\textit {\_Z}^{2}-21\right )+21 \sqrt {1-2 x}}{2+3 x}\right )}{7}\) \(124\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^3,x,method=_RETURNVERBOSE)

[Out]

250*(-133/110*(1-2*x)^(3/2)+131/50*(1-2*x)^(1/2))/(-6-10*x)^2-6665/121*arctanh(1/11*55^(1/2)*(1-2*x)^(1/2))*55
^(1/2)-6*(1-2*x)^(1/2)/(-4/3-2*x)+624/7*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 128, normalized size = 1.06 \begin {gather*} \frac {6665}{242} \, \sqrt {55} \log \left (-\frac {\sqrt {55} - 5 \, \sqrt {-2 \, x + 1}}{\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}}\right ) - \frac {312}{7} \, \sqrt {21} \log \left (-\frac {\sqrt {21} - 3 \, \sqrt {-2 \, x + 1}}{\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}}\right ) + \frac {14925 \, {\left (-2 \, x + 1\right )}^{\frac {5}{2}} - 66670 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} + 74393 \, \sqrt {-2 \, x + 1}}{11 \, {\left (75 \, {\left (2 \, x - 1\right )}^{3} + 505 \, {\left (2 \, x - 1\right )}^{2} + 2266 \, x - 286\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^3,x, algorithm="maxima")

[Out]

6665/242*sqrt(55)*log(-(sqrt(55) - 5*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 312/7*sqrt(21)*log(-(sqr
t(21) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 1/11*(14925*(-2*x + 1)^(5/2) - 66670*(-2*x + 1)^(3/
2) + 74393*sqrt(-2*x + 1))/(75*(2*x - 1)^3 + 505*(2*x - 1)^2 + 2266*x - 286)

________________________________________________________________________________________

Fricas [A]
time = 0.98, size = 142, normalized size = 1.17 \begin {gather*} \frac {46655 \, \sqrt {11} \sqrt {5} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} \log \left (\frac {\sqrt {11} \sqrt {5} \sqrt {-2 \, x + 1} + 5 \, x - 8}{5 \, x + 3}\right ) + 75504 \, \sqrt {7} \sqrt {3} {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )} \log \left (-\frac {\sqrt {7} \sqrt {3} \sqrt {-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) + 77 \, {\left (14925 \, x^{2} + 18410 \, x + 5662\right )} \sqrt {-2 \, x + 1}}{1694 \, {\left (75 \, x^{3} + 140 \, x^{2} + 87 \, x + 18\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^3,x, algorithm="fricas")

[Out]

1/1694*(46655*sqrt(11)*sqrt(5)*(75*x^3 + 140*x^2 + 87*x + 18)*log((sqrt(11)*sqrt(5)*sqrt(-2*x + 1) + 5*x - 8)/
(5*x + 3)) + 75504*sqrt(7)*sqrt(3)*(75*x^3 + 140*x^2 + 87*x + 18)*log(-(sqrt(7)*sqrt(3)*sqrt(-2*x + 1) - 3*x +
 5)/(3*x + 2)) + 77*(14925*x^2 + 18410*x + 5662)*sqrt(-2*x + 1))/(75*x^3 + 140*x^2 + 87*x + 18)

________________________________________________________________________________________

Sympy [A]
time = 118.61, size = 522, normalized size = 4.31 \begin {gather*} 252 \left (\begin {cases} \frac {\sqrt {21} \left (- \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} - 1\right )}\right )}{147} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {21}}{3} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {21}}{3} \end {cases}\right ) + 1360 \left (\begin {cases} \frac {\sqrt {55} \left (- \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1 \right )}}{4} + \frac {\log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1 \right )}}{4} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )} - \frac {1}{4 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )}\right )}{605} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {55}}{5} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {55}}{5} \end {cases}\right ) + 440 \left (\begin {cases} \frac {\sqrt {55} \cdot \left (\frac {3 \log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1 \right )}}{16} - \frac {3 \log {\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1 \right )}}{16} + \frac {3}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )} + \frac {1}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} + 1\right )^{2}} + \frac {3}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )} - \frac {1}{16 \left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} - 1\right )^{2}}\right )}{6655} & \text {for}\: \sqrt {1 - 2 x} > - \frac {\sqrt {55}}{5} \wedge \sqrt {1 - 2 x} < \frac {\sqrt {55}}{5} \end {cases}\right ) - 1854 \left (\begin {cases} - \frac {\sqrt {21} \operatorname {acoth}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x < - \frac {2}{3} \\- \frac {\sqrt {21} \operatorname {atanh}{\left (\frac {\sqrt {21} \sqrt {1 - 2 x}}{7} \right )}}{21} & \text {for}\: x > - \frac {2}{3} \end {cases}\right ) + 3090 \left (\begin {cases} - \frac {\sqrt {55} \operatorname {acoth}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: x < - \frac {3}{5} \\- \frac {\sqrt {55} \operatorname {atanh}{\left (\frac {\sqrt {55} \sqrt {1 - 2 x}}{11} \right )}}{55} & \text {for}\: x > - \frac {3}{5} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(1/2)/(2+3*x)**2/(3+5*x)**3,x)

[Out]

252*Piecewise((sqrt(21)*(-log(sqrt(21)*sqrt(1 - 2*x)/7 - 1)/4 + log(sqrt(21)*sqrt(1 - 2*x)/7 + 1)/4 - 1/(4*(sq
rt(21)*sqrt(1 - 2*x)/7 + 1)) - 1/(4*(sqrt(21)*sqrt(1 - 2*x)/7 - 1)))/147, (sqrt(1 - 2*x) > -sqrt(21)/3) & (sqr
t(1 - 2*x) < sqrt(21)/3))) + 1360*Piecewise((sqrt(55)*(-log(sqrt(55)*sqrt(1 - 2*x)/11 - 1)/4 + log(sqrt(55)*sq
rt(1 - 2*x)/11 + 1)/4 - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 + 1)) - 1/(4*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)))/605, (s
qrt(1 - 2*x) > -sqrt(55)/5) & (sqrt(1 - 2*x) < sqrt(55)/5))) + 440*Piecewise((sqrt(55)*(3*log(sqrt(55)*sqrt(1
- 2*x)/11 - 1)/16 - 3*log(sqrt(55)*sqrt(1 - 2*x)/11 + 1)/16 + 3/(16*(sqrt(55)*sqrt(1 - 2*x)/11 + 1)) + 1/(16*(
sqrt(55)*sqrt(1 - 2*x)/11 + 1)**2) + 3/(16*(sqrt(55)*sqrt(1 - 2*x)/11 - 1)) - 1/(16*(sqrt(55)*sqrt(1 - 2*x)/11
 - 1)**2))/6655, (sqrt(1 - 2*x) > -sqrt(55)/5) & (sqrt(1 - 2*x) < sqrt(55)/5))) - 1854*Piecewise((-sqrt(21)*ac
oth(sqrt(21)*sqrt(1 - 2*x)/7)/21, x < -2/3), (-sqrt(21)*atanh(sqrt(21)*sqrt(1 - 2*x)/7)/21, x > -2/3)) + 3090*
Piecewise((-sqrt(55)*acoth(sqrt(55)*sqrt(1 - 2*x)/11)/55, x < -3/5), (-sqrt(55)*atanh(sqrt(55)*sqrt(1 - 2*x)/1
1)/55, x > -3/5))

________________________________________________________________________________________

Giac [A]
time = 1.61, size = 123, normalized size = 1.02 \begin {gather*} \frac {6665}{242} \, \sqrt {55} \log \left (\frac {{\left | -2 \, \sqrt {55} + 10 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {55} + 5 \, \sqrt {-2 \, x + 1}\right )}}\right ) - \frac {312}{7} \, \sqrt {21} \log \left (\frac {{\left | -2 \, \sqrt {21} + 6 \, \sqrt {-2 \, x + 1} \right |}}{2 \, {\left (\sqrt {21} + 3 \, \sqrt {-2 \, x + 1}\right )}}\right ) + \frac {9 \, \sqrt {-2 \, x + 1}}{3 \, x + 2} - \frac {5 \, {\left (665 \, {\left (-2 \, x + 1\right )}^{\frac {3}{2}} - 1441 \, \sqrt {-2 \, x + 1}\right )}}{44 \, {\left (5 \, x + 3\right )}^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(1/2)/(2+3*x)^2/(3+5*x)^3,x, algorithm="giac")

[Out]

6665/242*sqrt(55)*log(1/2*abs(-2*sqrt(55) + 10*sqrt(-2*x + 1))/(sqrt(55) + 5*sqrt(-2*x + 1))) - 312/7*sqrt(21)
*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) + 9*sqrt(-2*x + 1)/(3*x + 2) - 5/4
4*(665*(-2*x + 1)^(3/2) - 1441*sqrt(-2*x + 1))/(5*x + 3)^2

________________________________________________________________________________________

Mupad [B]
time = 0.10, size = 89, normalized size = 0.74 \begin {gather*} \frac {624\,\sqrt {21}\,\mathrm {atanh}\left (\frac {\sqrt {21}\,\sqrt {1-2\,x}}{7}\right )}{7}-\frac {6665\,\sqrt {55}\,\mathrm {atanh}\left (\frac {\sqrt {55}\,\sqrt {1-2\,x}}{11}\right )}{121}+\frac {\frac {6763\,\sqrt {1-2\,x}}{75}-\frac {13334\,{\left (1-2\,x\right )}^{3/2}}{165}+\frac {199\,{\left (1-2\,x\right )}^{5/2}}{11}}{\frac {2266\,x}{75}+\frac {101\,{\left (2\,x-1\right )}^2}{15}+{\left (2\,x-1\right )}^3-\frac {286}{75}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(1/2)/((3*x + 2)^2*(5*x + 3)^3),x)

[Out]

(624*21^(1/2)*atanh((21^(1/2)*(1 - 2*x)^(1/2))/7))/7 - (6665*55^(1/2)*atanh((55^(1/2)*(1 - 2*x)^(1/2))/11))/12
1 + ((6763*(1 - 2*x)^(1/2))/75 - (13334*(1 - 2*x)^(3/2))/165 + (199*(1 - 2*x)^(5/2))/11)/((2266*x)/75 + (101*(
2*x - 1)^2)/15 + (2*x - 1)^3 - 286/75)

________________________________________________________________________________________